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Confined harmonically interacting spin-polarized fermions in a magnetic field: Thermodynamics
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We investigate the combined influence of a magnetic field and a harmonic interparticle interaction on the
thermodynamic properties of a finite number of spin-polarized fermions in a confinement potential. This study
is an extension using our path integral approach of symmetrized density matrices for identical particles. The
thermodynamical properties are calculated for a three-dimensional model ofN harmonically interacting spin-
polarized fermions in a parabolic potential well in the presence of a magnetic field. The free energy and the
internal energy are obtained for a limited number of particles. Deviations from the thermodynamical limit
become negligible for about 100 or more particles, but even for a smaller number of fermions present in the
well, scaling relations similar to those of the continuum approximation to the density of states are already
satisfied.@S1063-651X~99!02604-5#

PACS number~s!: 05.30.2d, 03.75.Fi, 32.80.Pj
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I. INTRODUCTION

In the present paper we study the thermodynamical pr
erties of a confined system of spin-polarized fermions in
presence of a magnetic field. The method used is an ex
sion of the combination of the path integral formalism@1#
and the method of symmetrized density matrices@2#, devel-
oped previously@3–6# for a model system of harmonicall
interacting identical particles~bosons or fermions! in a para-
bolic well ~hereafter for brevity referred to as the harmon
model!.

Because of the experimental realization of Bose-Eins
condensation@7–9# and the theoretical work on this phenom
enon employing other methods@10–17#, full details for this
harmonic model with interactions were first worked out f
bosons. The model shows the onset of Bose-Einstein con
sation in the specific heat@18# for a finite number of par-
ticles, and its moment of inertia is drastically reduced bel
the condensation temperature@19#. An application of the
method to real systems can be found in Ref.@20# for 87Rb.

The actual calculations for the fermion case require m
advanced techniques, such as the generating function
proach and the corresponding contour integration, becaus
a numerical sign problem. In the absence of a magnetic fi
explicit results for the thermodynamics and the static co
lation functions of the harmonic model of spin-polarized fe
mions were already obtained with these techniques@5,6#.

The harmonic model clearly has intrinsic value on
own, because it is one of the rare examples of an exa
soluble many-particle system with interactions. The phys
of the model is relatively straightforward in the sense tha
allows for center-of-mass excitations that oscillate at f
quencies different from those of the internal degrees of fr

*Also at Universiteit Antwerpen~RUCA! and Technische Univer
siteit Eindhoven, NL 5600 MB Eindhoven, The Netherlands.
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dom. This property makes it well suited as a trial model
the variational treatment of the thermodynamics of syste
with more realistic interactions because the model para
eters can be related with the system characteristics with
aid of the Jensen-Feynman inequality@2#. The present pape
addresses only the first part of such an approach becau
requires also the density and the pair correlation funct
which we could obtain under the simplifying assumptions
no magnetic field@6#. Furthermore, it provides a testin
ground for new approaches to Monte Carlo simulations
interacting fermions such as many body diffusion@21–23#.
Especially for quantum dots, it is important to take the ma
netic field into account in order to freeze out the oppos
spin states. In the present paper we present an extensio
the methods mentioned above to harmonically interact
confined fermions in a magnetic field.

The paper is organized as follows. In Sec. II we pres
the path integral for harmonically interacting particles in
parabolic confinement potential in the presence of a hom
geneous magnetic field. This will be done for distinguisha
as well as for identical particles. The mathematical details
the calculation for identical particles are given in the Appe
dix. In Sec. III the permutation symmetry will be taken in
account with the aid of the projection technique. The int
duction of the permutation symmetry implies the rewriting
the sum over all possible permutations to a cyclic summa
@2# which leads to the generating function of the partiti
function. Specific results for fermions will be presented
Sec. IV. This involves the extraction of the partition functio
and other thermodynamical quantities from the genera
function. Also the ground state energy and the magnetic s
ceptibility in the zero-temperature limit will be investigate
Additionally we will study the finite number corrections t
the thermodynamic limit for the free energy and the inter
energy as a function of temperature and magnetic field
the last section some conclusions are given.
3911 ©1999 The American Physical Society
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II. IDENTICAL OSCILLATORS IN A MAGNETIC FIELD

The calculation of the path integral forN identical inter-
acting oscillators in a magnetic field is similar to the ca
without a magnetic field in@3#. This approach crucially relies
on the detailed investigation of the classical action and
path integral corrections to this classical action. Altern
tively, a more stochastic approach could be followed@24#.
The Lagrangian~in atomic units! for N oscillators with har-
monic two-body interactions and in the presence of a hom
geneous magnetic field is given by

L5
1

2(
j 51

N

~ ṙ j
222vcxj ẏ j !2V12V2 , ~1!

wherevc is the cyclotron frequency and

V15
V2

2 (
j 51

N

r j
2 and V256

v2

4 (
j ,l 51

N

~r j2r l !
2. ~2!

It is obvious that the two-body potential is either attractive
repulsive depending on the plus sign or the minus sign c
sidered inV2 . The magnetic field introduces a coupling
the plain perpendicular to its direction. This means that
can separate the Lagrangian into two contributionsL5Lxy
1Lz . The LagrangianLz simply describes a harmonic osci
lator, whereasLxy contains the magnetic field. The Lagran
ian can be rewritten in terms of the center-of-mass coo
nateR(X,Y,Z) and the coordinatesh j (uj ,v j ,wj ) describing
the coordinates of the particles measured from the cente
mass,

R5
1

N(
j 51

N

r j , h j5r j2R, ~3!
e

e
-

-

r
n-

e

i-

of

from which

V11V25Vc.m.1V, Vc.m.5
1

2
NV2R2, V5

w2

2 (
j 51

N

h j
2 ,

~4!

with

w5AV26Nv2. ~5!

For a repulsive two-particle potential the internal frequen
w has to satisfy the stability condition that the confinin
potential has to be sufficiently strong to overcome the rep
sion between the particles. We draw attention to the fact
the transformation to the center-of-mass coordinate sys
diagonalizes neither the Lagrangian nor the Hamiltonian,
cause of the subsidiary condition

(
j 51

N

~r j2R!50. ~6!

We obtain the propagator for distinguishable~indicated
by a subscriptD) particles from the action expressed in th
imaginary time variableb51/kT and it is written as

KD~r19 , . . . ,rN9 ,bur18 , . . . ,rN8 ,0!

5KD„~ x̄9,ȳ9!,bu~ x̄8,ȳ8!,0…3KD~ z̄9,buz̄8,0!,

~7!

where the vectorx̄ denotes theN-dimensionalx coordinates
of the particles, with the notationx̄T5(x1 ,x2 , . . . ,xN), and
similarly for ȳ and z̄. The propagator for a single oscillato
with frequencyÃ in a magnetic field is well known@3# and
given by
KvL

~1!~r 9,bur 8,0!5A Ã

2p sinhbÃ

s

2p sinhbs
expH 2

Ã

2 sinhbÃ
$@~z8!21~z9!2#coshbÃ22z8z9%J

3expH 2
s

2

@~x9!21~y9!21~x8!21~y8!2#coshbs22~x8x91y8y9!coshbvL

sinhbs J
3expH 2 i S vL~x9y92x8y8!2s

sinhbvL

sinhbs
~y8x92y9x8! D J , ~8!

wherevL5vc/2 is the Larmor frequency and the eigenfrequencys is given by

s5AÃ21vL
2. ~9!

The propagator forN distinguishableinteracting oscillators in a magnetic field thus becomes

KD~ r̄ 9,bu r̄ 8,0!5
KV~ANZ9,buANZ8,0!

Kw~ANZ9,buANZ8,0!

KvL ,sc.m.
~ANX9,ANY9,buANX8,ANY8,0!

KvL ,s~ANX9,ANY9,buANX8,ANY8,0!

3)
j 51

N

KvL ,s~xj9 ,yj9 ,buxj8 ,yj8,0!Kw~zj9 ,buzj8,0!, ~10!
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where

s5Aw21vL
2 and sc.m.5AV21vL

2. ~11!

The factorAN in the center-of-mass coordinates in Eq.~10!
describes the massN ~in atomic units! of the center. The
denominator in Eq.~10! accounts for the fact that the intern
degrees of freedom are linearly dependent because of
subsidiary conditions~6!. Intuitively this factor is quite natu-
ral, because the propagator would be the product of o
particle propagators@3# if the particles were independent.

Knowing the propagator for distinguishable particles, t
symmetrized density matrixKI for identical particles can be
obtained through the appropriate symmetric or antisymm
ric projection

KI~ r̄ 9,bu r̄ 8,0!5
1

N!(P
jpKD~Pr̄ 9,bu r̄ 8,0!, ~12!

where P denotes the permutation matrix, withj511 for
bosons andj521 for fermions. Even for this harmoni
model, with or without magnetic field, the sum over the p
mutations has to remain rather formal at the level of
propagator. However, for the partition function
ve

te
d,

rit
he

e-

e

t-

-
e

ZI~b,N!5E dr̄KI~ r̄ ,bu r̄ ,0!5
1

N!(P
jpE dr̄KD~Pr̄ ,bu r̄ ,0!,

~13!

analytical progress can be made with this summation as
be discussed in the next section. First of all, one has to d
with the center-of-mass contribution to the propagator. A
terwards, the summation over all possible permutations
be rewritten as a summation over all possible cycles.

III. GENERATING FUNCTION OF THE PARTITION
FUNCTION

The center of mass is not independent of the positions
the other particles, which complicates the calculation of
trace of the propagator. To deal with the contribution of t
center-of-mass coordinateR to the propagator, we introduc
the delta functiond„R2(1/N)( j 51

N r j… in its Fourier repre-
sentation as in@3#. This d function allows one to formally
treat the center-of-mass coordinate as an independent
able. Applying this identity to the partition function, on
ends up with
ZI~b,N!5E dRE dk

~2p!3
eik•R

KV~ANZ,buANZ,0!

Kw~ANZ,buANZ,0!

KvL,sc.m.
~ANX,ANY,buANX,ANY,0!

KvL,s
~ANX,ANY,buANX,ANY,0!

3E dr̄
1

N!(P
jp)

j 51

N

KvL,s
„~Px! j ,~Py! j ,buxj ,yj ,0…Kw„~Pz! j ,buzj ,0…e

2 ikW•rW j /N. ~14!
er
The problem at hand is the rewriting of the summation o
the permutations as a sum over all possible cycles@3#. This
cyclic decomposition requires the solution of the path in
gral for a driven harmonic oscillator in a magnetic fiel
which is discussed in the Appendix.

A permutation can be decomposed intoM l cycles of
lengthl , and the positive integersM l andl have to satisfy
the constraint

(
l

l M l 5N. ~15!

The numberM (M1 , . . . ,MN) of permutations withM1

cycles of length 1, . . . ,M l cycles of lengthl , . . . is given
by M (M1 , . . . ,MN)5N!/ @) l M l ! l M l #. Furthermore, a
cycle of lengthl will be obtained froml 21 permutations.
Thus, the sign factor jp can be rewritten asjp

5) l j (l 21)M l . These considerations enable one to rew
the partition function as
r

-

e

ZI~b,N!5E dRE dk

~2p!3
eik•R

KV~ANZ,buANZ,0!

Kw~ANZ,buANZ,0!

3
KvL,sc.m.

~ANX,ANY,buANX,ANY,0!

KvL,s
~ANX,ANY,buANX,ANY,0!

3 (
M1 , . . . ,MN

)
j 51

N
j~ l 21!M l

M l ! l M l
@Kl ~k!#M l , ~16!

with

Kl ~k!5E dr l 11•••E dr1d~r l 112r1!

3)
j 51

l

KvL,s
~xj 11 ,yj 11 ,buxj ,yj ,0!

3Kw~zj 11 ,buzj ,0!e2 ikW•rW j /N. ~17!

Thed function explicitly indicates that the trace is taken ov
a cycle of lengthl . It is obvious thatKl (k) factorizes as
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Kl ~k!5Kl ~kx ,ky!Kl ~kz!. ~18!

Taking into account the semigroup property of the propa
tors KvL ,s(xj 11 ,yj 11 ,buxj ,yj ,0) andKw(zj 11 ,buzj ,0), one

immediately recognizes inKl (k) the partition function of a
driven harmonic oscillator in a magnetic field, with the dri
ing force

f~t!5 i
k

N (
j 50

l 21

d~t2 j b!. ~19!

The calculation of the propagator and the partition funct
-
ta
s t

tio
fi-
tin
a
g

r-
el
ca
-

n

for a driven harmonic oscillator in a magnetic field, with th
Lagrangian

L f,vL

~1! 5
1

2
~ ẋ21 ẏ2!22vLxẏ2

w2

2
~x21y2!1 f x~t!x

1 f y~t!y, ~20!

is illustrated in the Appendix. As mentioned above, the h
core of this approach is the evaluation of the classical act
but a fully stochastic method@24# could as well have been
followed. After tedious algebra one eventually finds for t
partition function
ZI~b,N!5E dR
KV~ANZ,buANZ,0!

Kw~ANZ,buANZ,0!

KvL,sc.m.
~ANX,ANY,buANX,ANY,0!

KvL,s
~ANX,ANY,buANX,ANY,0!

E dk

~2p!3
eik•R

3expS 2
1

4s

kx
21ky

2

N

sinhbs

coshbs2coshbvL
2

1

4w

kz
2

N

sinhbw

coshbw21D
3 (

M1 , . . . ,MN
)
j 51

N
j~ l 21!M l

M l ! l M l
S 1

8 sinh@ l b~s1vL!/2#sinh@ l b~s2vL!/2#sinh~ l bw/2! D
M l

. ~21!

The remaining integrations overk andR are Gaussian and relatively easy to perform, leading to

ZI~b,N!5
sinh@b~s1vL!/2#sinh@b~s2vL!/2#sinh~bw/2!

sinh@b~sc.m.1vL!/2#sinh@b~sc.m.2vL!/2#sinh~bV/2!
ZI~N!, ~22!

with

ZI~b,N!5 (
M1 , . . . ,MN

)
j 51

N
j~ l 21!M l

M l ! l M l
S 1

8 sinh@ l b~s1vL!/2#sinh@ l b~s2vL!/2#sinh~ l bw/2! D
M l

. ~23!
ht-

cu-
he
The contributionZI(b,N) derives from the internal de
grees of freedom, treated as independent particles. It con
the full influence of the statistics of the particles, and lead
the true partition functionZI(b,N) by multiplication with a
simple analytical factor. In practice, the condition~15! com-
plicates the use of the above expression for the parti
function for a large number of particles. However, this dif
culty can be overcome through the use of the genera
function. From the generating function one can then extr
the partition function through an inversion of its definin
Taylor series.

Generating function and recurrence relation for the partition
function

The generating function technique was used before@3# to
obtain the partition function of a set of harmonically inte
acting identical oscillators in the absence of a magnetic fi
In the presence of a magnetic field, a similar construction
be used. Introducing the generating function as

J I~b,u!5 (
N50

`

ZI~N!uN ~24!
ins
o

n

g
ct

d.
n

@with ZI(b,0)51 by definition#, the partition function for the
internal degrees of freedom can be obtained from

ZI~b,N!5
1

N!

dN

duN
J I~u!uu50 . ~25!

The generating function itself can be obtained with straig
forward algebra

J I~b,u!5expS (
l 51

`
j l 21

l

~b1b2b! l /2ul

~12bl !~12b1
l !~12b2

l !
D ,

~26!

with the notation

b5e2bw, b15e2b~s1vL!, b25e2b~s2vL!. ~27!

The cyclic summation can be rewritten in terms of the oc
pation number representation which directly involves t
single-particle energy levels:
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J I~b,u!5 )
n,n1 ,n250

`

~12jub1
n111/2b2

n211/2bn11/2!2j.

~28!

By simply applying the chain rule, the expression~25! for
the partition function can be written as a recurrence rela

ZI~b,N!5
1

N (
l 51

N

j l 21
~b1b2b! l /2

~12b1
l !~12b2

l !~12bl !

3ZI~b,N2l !. ~29!

However, if the number of particles increases, this recurre
relation becomes numerically unpractical because of a
merical sign problem for fermions and drastically increas
simulation time for bosons. For the remaining part of th
paper, the attention will be focussed on the fermion case

IV. THERMODYNAMICAL PROPERTIES

The thermodynamical properties of the fermion mod
can in essence be determined from the contributionZF(b,N)
of the internal degrees of freedom. As is clear from Eq.~22!,
the center-of-mass correction only adds a trivial contribut
to the free energy. All the effects of the fermion statistics
collected inZF(b,N). We first study the zero-temperatu
limit, in which special attention will be paid to the two
dimensional case in thexy plane, and subsequently the ev
lution of the free energy and the internal energy as a func
of the temperature and of the magnetic field.

A. Zero-temperature limit

The ground state properties of the fermion model c
cially depend on the single-particle energy levelsEn,n1 ,n2

.
These levels and their occupation by fermions have b
discussed and plotted earlier, e.g., in Ref.@25#. For easier
reference, we plot the 20 lowest levels Fig. 1. To guide
eye, the Fermi energiesEF corresponding to the fully occu
pied levels atvL50 are indicated by the dashed line. No

FIG. 1. Lowest single-particle energy levels~in units ofw) as a
function of the Larmor frequency. The Fermi energies correspo
ing to 1, 4, 10, and 20 fermions~i.e., for closed shells in the absenc
of a magnetic field! are emphasized by dashed lines. The results
also be found in Ref.@25#.
n

e
u-
g

l

n
e

n

-

n

e

that the magnetic field does not substantially influence
magnitude of the Fermi energy, which remains of orderN1/3

for sufficiently largeN. The magnetic field immediately lifts
the degeneracy, but with increasing magnetic field other
generacies appear and disappear again at particular valu
the magnetic field. Although these degeneracies have l
effect on the magnitude of the ground state energyEG
5(E,EF

E, they have a drastic effect on the magnetic s

ceptibility, which is proportional todEG /dvL , as shown in
Fig. 2 as a function of the magnetic field. The discontinuit
in the magnetic susceptibility occur at those values of
magnetic field where the single-particle energies become
generate.

B. Free energy and internal energy

As mentioned above, the sign problem for fermions c
be worked around by inverting the defining Taylor ser
~24! for the generating function. The Fowler-Darwin metho
@26# provides an accurate and elegant way@27# to realize this
inversion:

ZF~b,N!5
1

2p i RC

JF~b,z!

zN11
dz. ~30!

If one considers a circular contourz5ueiu with radiusu, an
optimal value ofu can be determined by the method of stee
est descent:

d

du
@ ln JF~b,u!2N ln u#50⇒N5u

d

du
ln JF~b,u!.

~31!

Using Eq.~28!, this condition becomes

N5 (
n,n1 ,n250

`

nn,n1 ,n2
, ~32!

with

d-

n

FIG. 2. Scaled magnetic susceptibility (1/N)(dEG /dvL) as a
function of the magnetic field for 1, 4, 10, and 20 fermions in t
ground state.
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nn,n1 ,n2
5

1

11ebEn,n1 ,n2u
,

En,n1 ,n2
5S n11

1

2D s11S n21
1

2D s21S n1
1

2Dw. ~33!

If u were to be interpreted as the fugacityu5ebm with
chemical potentialm, one thus would recover similar resul
as for the expectation value of the number of particles in
grand canonical ensemble. The result for the chemical po
tial as a function of temperature is shown in Fig. 3 for va
ous values of the magnetic field and forN52. The chemical
potential is plotted in units of the chemical potential atT
50 and the temperature in units ofwN1/3, which is the order
of magnitude for the Fermi energy. In Figs. 4 and 5 t
corresponding results are shown forN510 andN5100. For
N*100 it turns out thatm(T)/m(T50) as a function of
kT/wN1/3 becomes almost independent of both the num
of particles and of the magnetic field.

However, in the present treatment the determination
u5ebm from Eq. ~32! only gives the zero-order contributio
to the partition function. A correction by the integration fa

FIG. 3. Scaled chemical potentialm(T)/m(T50) as a function
of the scaled temperaturet5kT/wN1/3 for 2 fermions and for
vL /w50, 1, and 2.

FIG. 4. Same as Fig. 3, but for 10 fermions.
e
n-
-

r

f

tor in Eq. ~30! has to be applied. Using the symmetry of th
integrand in Eq.~30!, the partition function can be rewritte
as

ZF~b,N!5
JF~b,u!

uN

1

2pE0

2pJF~b,ueiu!

JF~b,u!
e2 iNudu

5
JF~b,u!

uN E
0

p

C~u!du, ~34!

with

C~u!5ReF 1

p
e2 iuN

JF~b,ueiu!

JF~b,u! G . ~35!

The functionC(u) has to be calculated and integrated n
merically. The determination of the free energy

FF~b,N!52
1

N
ln ZF~b,N!5FF

~0!~b,N!2
1

b
lnE

0

p

C~u!du

~36!
-

FIG. 5. Same as Fig. 3, but for 100 fermions.

FIG. 6. Scaled free energy per particlef 5FF /NEF as a function
of the scaled temperaturekT/EF for 10 fermions and with the Lar-
mor frequencyvL52w. The zero-order ‘‘steepest descent’’ contr
bution is indicated by the dashed line.
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then becomes straightforward, with the zero-order contri
tion

FF
~0!~b,N!52

1

b
ln

JF~b,u!

uN

from the steepest descent approximation. In the absence
magnetic field, the results are discussed in@6#. For vL52w
the free energy per particle in units of Fermi energy is pl
ted as a function ofkT/EF for 10 fermions in Fig. 6 and for
100 fermions in Fig. 7, and compared to the zero-or
steepest descent contribution. Again, forN*100 the finite
number corrections upon the thermodynamical limit beco
negligible for all practical purposes. The internal energyUF
5(d/db)(bFF) shows the same universality, as is shown
Fig. 8 where the internal energy per particle in units of t
Fermi energy is plotted versus the temperature in units of
Fermi temperature forvL50, w, and 2w.

V. CONCLUSION AND DISCUSSION

Using the path integral approach of symmetrized den
matrices for identical particles, the thermodynamical prop
ties were calculated for a three-dimensional model ofN har-
monically interacting spin-polarized fermions in a parabo
potential well in the presence of a magnetic field. T
method used is a generalization of the procedure develo
earlier in the absence of a magnetic field. Explicit resu
were obtained for the ground state energy, the free ene
and the internal energy for a limited number of particles. T
model can be described as a number of spin polarized id
tical particles in a parabolic confinement potential interact
through a special many-body interaction with the con
quence that the center of mass is allowed to move indep
dent from the other degrees of freedom. For an analog
model other forms of confinement potentials have been
vestigated without two-body interaction@29#. With two-body
interactions, the model has been studied with the oper
formalism in several papers@30,31#, with emphasis on the
ground state properties.

The statistics with a finite number of particles in the co
finement potential and the crossover to density-depen
expressions known from the thermodynamical limit can
studied in this model: as soon as the number of fermion

FIG. 7. Same as Fig. 6, but for 100 fermions.
-

f a

-

r

e

e
e

y
r-

ed
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y,
e
n-
g
-
n-
us
-

or

-
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e
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sufficiently large~in the order ofN*100) the results are
shown to agree and the finite number corrections beco
relatively small. The internal energy turns out to obey a sc
ing law, similar to the scaling from the continuum approx
mation for the density of states.
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APPENDIX: THE PATH INTEGRAL OF THE MODEL
FOR DISTINGUISHABLE PARTICLES

IN THE PRESENCE OF A MAGNETIC FIELD
AND A TIME-DEPENDENT DRIVING FORCE

The propagator of a two-dimensional harmonic oscilla
in the presence of a magnetic field, characterized by the L
mor frequencyvL5vc/2, and under the influence of a time
dependent driving forcef5( f x , f y), provides the basic build-
ing blocks for the harmonic model system of identic
interacting particles which is the subject of the present pa
Although the calculation of this propagator relies on stand
techniques, to the best of our knowledge it is not documen
in the literature. Therefore we discuss its derivation here
some detail. The Lagrangian under consideration is given
~in atomic units\5m5ueu51)

L f,vL

~1! 5
1

2
~ ẋ21 ẏ2!22vLxẏ2

w2

2
~x21y2!1 f x~t!x

1 f y~t!y. ~A1!

FIG. 8. Scaled internal energy per particleu5UF /NEF for 100
fermions as a function of the scaled temperaturekT/EF for several
values of the Larmor frequencyvL50, w, and 2w.
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The classicalequations of motion in Euclidean timet5 i t
are

2
d2x

dt2
522ivL

dy

dt
2w2x1 f x , ~A2!

2
d2y

dt2
52ivL

dx

dt
2w2y1 f y . ~A3!
This set of coupled differential equations can be solved
yields

x~t!5xh~t!1xp~t!, y~t!5yh~t!1yp~t!. ~A4!

The solutionsxh(t) and yh(t) of the homogeneous equa
tions of motion~without the driving force!, which exhaust
the boundary conditionsxh(0)5x8, xh(b)5x9, yh(0)
5y8, yh(b)5y9, are found to be
termined
ds. The

or
S xh~t!

yh~t!
D 5

sinhs~b2t!

sinhbs S coshvLt i sinhvLt

2 i sinhvLt coshvLt D S x8

y8
D 1

sinhst

sinhbsS coshvL~b2t! 2 i sinhvL~b2t!

i sinhvL~b2t! coshvL~b2t!
D S x9

y9
D ,

~A5!

with

s5AvL
21w2. ~A6!

The derivation of the particular solutionsxp(t) andyp(t), with the boundary conditionsxp(0)5xp(b)5yp(0)5yp(b)50, is
slightly more involved but eventually results in

S xp~t!

yp~t!
D 5

1

s

sinhs~b2t!

sinhbs E
0

tS coshvL~t2s! i sinhvL~t2s!

2 i sinhvL~t2s! coshvL~t2s!
D S f x~s!

f y~s!
D sinhssds

1
1

s

sinhst

sinhbsEt

bS coshvL~t2s! i sinhvL~t2s!

2 i sinhvL~t2s! coshvL~t2s!
D S f x~s!

f y~s!
D sinhs~b2s!ds. ~A7!

Given the classical trajectory with initial position (x8,y8) and final position (x9,y9) after an imaginary time lapseb, the
corresponding classical actionSf,cl5*0

bL fdt can be found by elementary methods. This eventually results in

Sf,cl~x9,y9,bux8,y8,0!52
s

sinhbsS 1

2
@~x9!21~y9!21~x8!21~y8!2#coshbs

2~x8x91y8y9!coshbvL1 i ~x8y92x9y8!sinhbvL

D 2 ivL~x9y92x8y8!

1
1

sinhbs1
1x8E

0

b

@ f x~t!coshvLt2 i f y~t!sinhvLt#sinhs~b2t!dt

1x9E
0

b

@ f x~t!coshvL~b2t!1 i f y~t!sinhvL~b2t!#sinhstdt

1y8E
0

b

@ f y~t!coshvLt1 i f x~t!sinhvLt#sinhs~b2t!dt

1y9E
0

b

@ f y~t!coshvL~b2t!2 i f x~t!sinhvL~b2t!#sinhstdt

2
1

1

s sinhbsE0

bE
0

tS @ f x~t! f x~s!1 f y~t! f y~s!#coshvL~t2s!

1 i @ f x~t! f y~s!1 f y~t! f x~s!#sinhvL~t2s!
D sinhss sinhs~b2t!dsdt.

~A8!

Since the Lagrangian is quadratic in the coordinates and the velocities, the quantum mechanical propagator is de
by the classical action, apart from a trivial normalization factor. The latter can be determined by elementary metho
calculation presents no difficulties and results in

K f~x9,y9,bux8,y8,0!5
s

2p sinhbs
exp@Sf,cl~x9,y9,bux8,y8,0!#. ~A9!

If one takes the limitvL→0, the correct result@1# is recovered.
For the treatment of the cyclic summations for identical particles, it is essential to know the trace of this propagat
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Zf5E E K f~x,y,bux,y,0!dxdy. ~A10!

The calculation of this quantity is straightforward and after some algebra one obtains

Zf5
1

2~coshbs2coshbvL!
expF F~b!

4s~coshbs2coshbvL!G , ~A11!

with

F~b!5E
0

bE
0

b

@ f x~t! f x~s!1 f y~t! f y~s!#S coshvL~t2s!sinhs~b2ut2su!

1coshvL~b2ut2su!sinhs~t2s!
D dsdt

1 i E
0

bE
0

b

@ f x~t! f y~s!1 f y~t! f x~s!#S sinhvL~t2s!sinhs~b2us2tu!

2sinhvL~b2ut2su!sinhs~t2s!
D dsdt. ~A12!

Again, if one takes the limit of a vanishing magnetic field, one finds the correct result@28#.
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